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MARRIAGE AND MONEY*

by

Thomas Quint

1. Introduction

Much of the economic and game theoretic literature focuses on the

questions of existence and characterization of equilibrium points or

core points. Of equal interest are schemes which actually calculate

such values. Indeed, predicting the behavior of economic markets

becomes a lot easier in the presence of such algorithms. In this paper,

we tackle this issue for the "marriage problem" with transferable

utility. Such matching problems are useful models of, for example, the

market in which jobs are to be matched to prospective employees.

Gale and Shapley [1962] were the first to formally pose a "marriage

problem". Their setup was as follows. Consider a system with two types

of agents, hereafter called men and women. Each man has a preference

ordering over the women; likewise, each woman ranks the men. The objec-

tive is to find a "stable" matching; i.e., one in which no unmarried

couple will willingly leave their spouses and run off together. To

solve the problem, they presented the well-known "Gale-Shapley" algo-

rithm:, Each man begins by proposing to his favorite woman. If no woman

receives more than one offer, the matching so defined is stable; if not,

any woman with two or more offers rejects all but the most appealing.

The rejected men then propose to their second choices, and so on. The

process ends when no woman has more than one pending offer. At this

*This research was supported by the Office of Naval Research Grant ONR-

N00014-79-C-0685 at the Institute for Mathematical Studies in the Social

Sciences, Stanford University. I would like at this time to thank my
dissertation advisor, Professor Kenneth Arrow, for his support and input
in this research.
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point, not only is the implied matching stable, but it is "man optimal"

as well, i.e., it is the stable outcome which is "best" for the men.

Interestingly, this method closely resembled the algorithm long used by

the medical profession in its assignment of interns to residency

programs [Roth, 1983].

In 1984 Gale and Demange proposed a major innovation into this

basic model. The new wrinkle was that monetary transfer was now allowed

between marriage partners. Thus, each man no longer expresses his

utility for prospective mates via a simple preference ordering.

Instead, he now has a series of utility functions, one for each woman,

each with the amount of monetary transfer as the independent variable.

In addition, each man has a "reservation utility"--that is, a utility

for being left unmatched. Of course, women's utilities for men have the

same structure.

This, then, is our model. Note that it is now much more complex

than the "simple" Gale-Shapley setup, because now, in our search for a

stable outcome, we must not only specify a matching, but also monetary

transfers to take place within each couple.

The paper is organized as follows. Section 2 defines the problem

and gives a proof of the existence of a stable solution. Section 3 dis-

cusses the "linear separable" case; i.e., where, in addition to the

linearity of the utility functions, we assume that a person's utility

for money does not depend on with whom he/she is matched. Section 4

covers the "linear nonseparable" case, where we drop the latter assump-

IL



tion. Unlike the previous case, we do not present a method for finding

all stable solutions. However, we do present an extension of the

Gale-Shapley algorithm which always calculates a stable solution, and

always generates a "man-optimal" matching. Next, in Section 5 we

generalize the algorithm presented in Section 4 to cover nonlinear

utility functions as well. Finally, Section 6 suggests some areas for

further research.

2. Description of Model

The data needed to describe the model is as follows. Set

m = number of men in the model

n = number of women in the model

u (a) = utility to man i of being matched to woman j and

receiving payment of a

ii vi (a) = utility to woman j of being matched to man i and

receiving payment of a

R = reservation utility of man iii
S = reservation utility of woman j

Assume that both u (a) and v (a) are strictly increasing in a.
ii ij

Definition: A matching is a set of man-woman pairs {(Mi,W.)}

with the property that no person is a member of more than one pair.

Definition: A feasible payoff is a set of utility levels {u i and

{v } such that there exists a matching L with payments {a to the

matched men satisfying:

,- o -" -.'r'r - v'. .-'.-- ".%.'-.'-: -°-. / / ". ''., " .%- ', -.i---, ,," . ,',7 i.' - .'! ' ','{"Zi - .7" -7



-4-

1) If i is not matched by p, u1 - R1 .
(2.1)

If j is not matched by p, vj - S .

2) If i is matched by p, and ai is the amount man i

receives from his mate pii], then u < u p[l(a i ) and

v Mi - viplil i(-ai

In other words, a feasible distribution of utility is one which the

system has the resources to effect. Note that we can also write

condition 2) as:

(2.2) f (u + g (v) < 0

where f and g are the inverse functions of u and v
ij gij vii

Definition: A stable payoff is a set of utility levels {u and
i

{v } Fuch that:

1) No single person wishes to run off, i.e., ui > R and

(2.3)
v > S for every man I and woman J.

2) No "unmarried" couple wishes to run off, i.e., there are no

a, i, and j for which u j(a) > ui  and v(-a) > vJ

Again, we can equivalently write:

(2.4) fij(ui) + gi (v]) > 0 for every ij.

Remark: Note that monetary transfers are only allowed between a

man and his prospective marriage partner.

% % . . . . .. . .

.. %.. . .%. €., ,'- ,." ._i : ._" -" .".. .-.. .,.. ... .'.. ..... ".. . . .,.",."--.-.. . . .-.. . . . .-.. ."'. .,... .-.
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Remark: Note that by (2.2) and (2.4), any stable feasible payoff

satisfies

(2.5) f (u)+ g (vj) 0 for i matched to J.
ii i

This complementarity surfaces later [as the constraint "s jj = 0" in

Sections 4) and 5)].

Definition: Define the core as the set of all stable feasible

payoffs. Define a core matching as any matching 4 under which stable

feasible payoffs exist. Let CM be the set of all core matchings.

Next, we state a result of Demange and Gale [19841:

Lemma 2.1: The set of men's utilities {u } for which there exist
i

utilities {v } satisfying

({u 1, {v }) is in the core

is a lattice.

*~ Proof: See Demange and Gale (1984).

Thus, it makes sense to define the man-optimal utilities as that

vector in the core which achieves the highest utility levels for the

men. Also, if 4 is a core matching under which the man-optimal

utilities are feasible, we call it a man optimal matching.

. 4 '. . .,. .. .... -... .. *'.. . * -.- . .* .. - . , . . -. ..- . . , . - .- ., .. ..... -.. -



Example: Suppose we have:

Uij women

v j J1 J=2 J=3 R,_ Ri

a a+l 2a+2
m 2a+6 a+3 a+2

5a-4 a+l 3a-5
5a+8 2a+8 6a-2

n 2a+3 -a 2x+ 11=3I
a-6 a+2 a-1

S. 0 2 2

Consider the matching l 1i  {(1,3),(2,1)}. Then the utilities are:

(u 1 ,U 2 ,U 3 ) = (2 + 2al,-4 + 5a2, 1 )

(vlv 2,V3) = (8 - 5a 2' 2 ,2 - a)

In order for i to be a core matching, we need ui > Ri, v > S,, i.e.,

-1 <a I < 0 and 3/5 < a2 < 8/5.

Finally we need to satisfy fij(ui) + g ij(vj) > 0 for every (ij)

combination. But this holds if we set:

a1 =0 and a2 = 8/5.

Remark: It is important to note that more than one core matching

can exist. For instance, one can verify that 42 , {(1,I),(2,2)) is also

in CM. Interestingly, the man-optimal utilities (u1,u2,u3) (3,4,1)

can be attained with p2 but not with "

S................. ... ..........--- ,.-.
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Theorem 2.1: The core of this game is nonempty.

Proof: Quinzii's (1984) proof in which she shows that certain

types of "pairing" models are balanced games applies here. However, we

supply a slightly different proof which is more specific to this

particular game.

Again, we show that the game is balanced. So, let T be any

balanced set of coalitions, and, for every S e T, let 6 be the
S

"balancing weight". Also, let VS  be the set of utility vectors that

the members of S can attain by themselves without outside intervention.

Next, suppose w = ({U }v) is a utility vector, with v C V for
i'

every S c T. We need to show that v c V , where N is the set of all

men and women (see Scarf, 1967).

Claim: Without loss of generality, we can assume that T contains

only 1-person coalitions and 1-man-i-woman coalitions.

S S S
Proof: Consider any coalition S c T, with w C V . Let 4 =

UM IWI),..,(M p ,W p)} be a matching within S which attains vS for

the members of S, and let {Mp,...,M ,Wp+l,...,W be the
p+1 p+q p p+r

S
members of S who are unmatched by 1 . Then replace S in T by

(S ,..., s p + q+r) , where:

St =(Mt,W t) if t < p

St  (Mt) if p+l < t < p+q

St - (Wt) if p+q+l < t < p+q+r.
t-q



Also, let

6St6 for all t.
St S

Repeat this process for every S c T, finally obtaining a (much larger)

set of coalitions T . T satisfies:

1) T is balanced.

2) T contains only 1-person coalitions and 1-man-l-woman

coalitions.
S VS 5VS

3) v cV for every S c T <==> w cV for every S c T*.

These three facts imply the Claim.

Assuming the Claim, we now prove w e VN  by induction on the

number of elements in T. It is obvious when ITI 1. So assume

ITI = k.

Case 1: 6S* = 0 for some S C T.

Then T - S is balanced, and thus,

5 V S S *
V C for every S C T => w V for every S T -S

W=> C VN  by the inductive hypothesis.

Case 2: 6 1* = 1 for some S c T.
- - S

Let S be the complement of S , i.e., the set of men and women not

• * *c
contained in S . Then T - S is a balanced set over S . Thus,

S S S S *
W 6V for every S E T => E VS for every S E T -S

*c *c
S S

W= C V by the inductive hypothesis.

U]
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S S
But this, combined with v e VS  and the fact that the game is

superadditive, imply v c V as desired.

Remark: So we now assume that 0 < 6 < I for every S c T. This
S

implies that every player in the game is a member of at least two

coalitions.

Case 3: There is at least one coalition in T with only one person.

Let A be the (m + n) x (k) "O-1"-matrix in which A = 1 iff the

it h  person is in the jth coalition. Thus, T balanced means that

(2.6) A = e, 6 > 0

has a solution, where e is a vector of l's. Next, set:

C = the number of columns in A

R = the number of rows in A

0= the number of "l's" in A

By the Claim and our assumption in Case 3, 0 < 2C. And, by the last

Remark, 0 > 2R. Thus, R < C. But this in conjunction with (2.6)

implies:

(2.7) A -e, 8 > 0, 8s =0 for some S

N N
has a solution (see Gale, 1960). So, by Case 1, V E V
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Case 4: T consists of only married couples.

Now 0 = 2C and 0 > 2R, but if 0 > 2R, then R < C again and we

N
can use the argument from Case 3 to show v c V . So assume that

0 = 2R = 2C. Then we have that:

1) Every man is in coalitions with exactly 2 women.

2) Every woman is in coalitions with exactly 2 men.

3) # of men in T = # of women in T = k.

So, without loss of generality, suppose {(M,W 1),(MW 2),(M 2,W I c T.

Then 6 = 6 = I -(MI,W 2 ) (M2 ,WI) (MI ,WI)"

Subcase A: (M2 ,W2) T.

Then 6(M2,W2 ) = 6 (MWI). and we can replace

6(M 1,W1 )0 6 (M1 ,W2 )$
6 (M2,W1 )9

6 (M2W2) by {1,0,0,1} and these

N
are still balancing weights. But by Case 1, v c V

Subcase B: (M2 ,W2 ) d T.

Then, without loss of generality, suppose {(M2 ,W3 ),(M3,W2)} c T.

i) (M3 ,W3) E T. In this case we can again replace

(6 ,6 6 6
(MI,W) (M1,W2) (M2,W1) (M2,W3)' (M3,W2)' (M3,W3)

, , VN
by (1,0,0,1,1,01 and still have balancing weights. So wf V by

Case 1.

I"

" -6-' -.- ,'- , , --- : .-' i i. .. . . .- . . . . .[ . .. . , . ... ... . . .
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ii) (M3,W3) T. Then assume {(M3,W4),(M4, 3)1 C T...
00

Continuing in this fashion, we must eventually reach a k1 < k for

which (Mkl,Wkl) c T. And we can replace

{(M1 P , 1 ) ,5 (M1 ,W2 ) 9,6 (M 2 'W1 ),.., (Mkl ,Wkl-l) ,6 (iM kl ) 1

by {1,0,0,1,1,0,0,...,1,1,0} if k1 is odd, and

{1,0,0,1,1,0,0,...,0,0,1} if kI is even,

and these are again balancing weights. So again we can use Case 1.

3. The Linear Separable Case

Now that we know core matchings with stable feasible payoffs always

exist, we consider the problem of trying to calculate them. We first

examine the linear separable case, where we allow the following

assumptions:

1) u j(a) and v (a) are linear for every i and J.
ii ii

2) A person's utility for money does not depend on with whom

he/she is matched.

After the appropriate normalization, this is equivalent to assuming that

the utility functions have the form

uij(a) - uij + a and v ij(a) vij + a.,

where uij and vij are constants. Let cij = uij + vii.

-. :.:;.
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With the problem so defined, note that it is a slight generali-

zation of Shapley and Shubik's housing market [1972]. In that model,

the buyers and sellers correspc J to our men and women. However,

sellers only care about the monetary transfer they receive and not who

it comes from. In addition, Shapley and Shubik assume that all

reservation utilities are zero.

However, their formulation of the problem as a linear program and

the interpretation of the dual variables as utilities remains valid. To

wit:

Theorem 3.1: p is a core matching iff it maximizes global

utility, i.e, it maximizes:

(3.1) R
ij )-E i not i not

matched matched

Proof: Consider the linear program (P1):

mn m n
max cpijPi j  + I Rq S r

i,J=1 i=I Jil

n

(3.2) s.t. i P + = 1
i-l

m

(3.3) PiJ + rj -

(3.4) Pij' qi' r > 0•
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This is of course equivalent to the program (P2):

M n +m~n M n n m
max [X R i + "1S ] +c cp 1 - Ri p - Si

i=1 j=1 i,j=l i=1 I i J-i i PiJ

n"(3.5) S.t. Xp < 1

J=1
m

(3.6) i lPl <  1

(3.7) Pj > 0

Let {Pl solve (P1) or (P2).
ii

Claim: Maximizing (3.1) is equivalent to solving program (PI).

Proof: It is clear that the Claim follows if we can show that

program (P1) can always be solved with pj' S qi's, and ri's all

equal to 0 or 1. But this holds by a simple perturbation argument on

any pij, qip or r for which this is not true.

So now consider the matching .L defined by

(Mi ,W1 ) c <=> i=

We want to find stable feasible utility levels compatible with i.
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Take the dual of (P2), obtaining (D2):

m n m n
min [ . Ri + S + u1  + v1

i= 1 1=1 -
=in I(38)... il + v j R, S~ i~

(3.9) ui, v1 > 0

Let {ui)  and {- ) solve (D2). Then consider the following

interpretation:

1) ii is the amount of utility man i receives in excess of

his reservation utility R.

2) v is the amount of utility woman j receives in excess of

her reservation utility

Claim: The optimal dual variables (Ui and { } are

feasible utility levels under p.

. Proof: First, if man i is matched by p, say, to woman J,

= 1 ==> constraint (3.7) is "loose"

(3.10) ==> +  = cij - Ri - S

by the complementary slackness theorem of linear programming. But, due

to the special structure of the utility functions, the pair (Mi,Wi)

can attain any "excess" utilities ui  and v satisfying (3.10).

...-.........

, -. . . . , . . . . . . . . . . . . . . ... . .. . . . . . .



- 15 -

Now suppose man i is unmatched by p. Then constraint (3.5) is

loose, and so ui = 0 again by complementary slackness. So indeed

man i receives his reservation utility Ri.

And, if woman j is unmatched by p, she receives Sj by a

similar argument.

Claim: {ui} , {V} are stable utility levels.

Proof: This holds because {i}, { } satisfy constraints

(3.8) and (3.9).

To prove the converse of the Theorem, we need to show that if

does not solve (PI) or (P2), then it cannot support "excess

utilities" satisfying (3.8) and (3.9). However, note that if {ui
i

and {v I are given the interpretation as excess utilities in (D2),

then the objective function in that program is X (reservation

utilities) + X (excess utilities), i.e., the global utility. And, by

the weak duality theorem,

global utility maximum
implied by global utility global utility
{u ) {v I > attainable in > attained

safisfyiAg (PI) or (P2) by ij
(3.8), (3.9) [by { _P 1]

Remark: Thus we can find the set of core matchings simply by using

the simplex method on program (PI) or (P2). To show how to find the

man-optimal utilities, we first restate Lemma 2.1:

........-..............-....... .......................- .. ,



Lemma 3.2: The set of men's utilities {u I for which there exist
i

utilities {v satisfying

({u }, {v }) is in the core
i'

is a lattice.

So, to find the man-optimal utilities, just let Z be the optimal

objective value of (PI), and solve program (D3):

m
max u

Pi

m n m n
(3.11) s.t. il ui + X v1  + Xl Ri  + Jl S = Z

JCI j=1 Pi iul J

(3.12) ui  + V1  > cij R, S
iI

(3.13) uV, vj > 0•

Remark: The above analysis holds for any utility functions u (a)
ii

and v j(a) as long as there exist constants clj satisfying

u (a) +v (-a) =ciii ii

for all a, i, and J.

* .* L . ..
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4. The Linear Nonseparable Case

In this section we drop the assumption of separability, i.e., a

person's utility for money depends on with whom he/she is matched.

Thus, the utility functions are represented as:

u ij(a) = uij + aija and v ij(a) = vij + b ij a

where uij, vij, aij, and bij are constants. The inverse functions

are:

u -u v-v
f11 (ui) ij - i

aj i a i J ( v j ) b=

Now consider any matching p, and let ai be the amount that man

i receives from his mate [i]. (ai does not exist if i isn't

p matched by p.) Then the feasibility and stability constraints (2.1) -

*(2.4) become:

(4.1) uj,[i, + ai,[]Jai > R, (for i matched)

(4.2) v[H - b [Jja [j] > Sj (for j matched)

R(4. S i > (neither i nor

aij b j matched)
ij ij

_a a -u S> 0 (for i matched,(4.4) abipl j unmatched)
aij bij

(4.5) + [i] b P[H]i a[J] vjj > 0 (for j matched,
7 a ij bii i unmatched)
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U +a a -

(4.6) aij

+ VPI[ili-b O aH~ ~IIJ ij > 0 (for i matched,
N b1  j matched)

Next, define

uj +a aa -R, if i matches j
*(4.7) 

- ii 0i it e w s

(.)v -j b iai -S if i matches j
(4.8) v = j ij

0 otherwise

1 if i matches J
(49 j0 otherwise

We interpret u ijas the excess utility that man i derives from

being matched to woman J. A similar interpretation holds for v j

Conditions (4.1) - (4.6) become

(4.10) U- (1-x )=0
ii ij

(4.12) xij(;ij - a~ja Ri -u 0
ij ii

* (.13 xi~i + a S v )=0(413 xij( j biii j ii

n
(4.14) x xj <1

7-
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(4.15) xij < I

iIi

. "n m

R Ri + [l1 - S + j V k - vij(4.16) 1.11 + b 0
a - aj b ij -

(4.17) iLj, v >0, unrestricted, x = 0 or 1 for all i, j.

A few words of explanation may be in order here. First of all,

equations (4.10) - (4.13) are the definitions of Uij and ij

[see (4.7), (4.8)]. Next, conditions (4.14) - (4.15) arise from the

definition of matching. Finally, constraints (4.16) are equivalent to

conditions (4.3) - (4.6), while (4.1) and (4.2) are reflected by

the nonnegativity of the variables {u] I and {viI.

So, denote by "System 1" the set of constraints (4.10) - (4.17).

Next, consider the following system of equations, which we call

"System 2":

(4.18) uij(1-xi 1 ) xij(l- xii) = s xi = 0

'(4.19) x <1

m
(4.20) xii < 1

- i-1

I,
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n mSR t + [ i0  -uS + [ 1]-vt
SI I uij Si I kj i

(4.21) 1  kbj 0aij  bijsi

(4.22) uij' vi sij > 0, Xij 0 or 1 for all i, J.

Proposition 4.1: System 1 and System 2 are equivalent.

Proof: Suppose ({uij), N ij), x ij), (ai)) solves System 1.

Then, setting sij equal to the amount of slack in constraints (4.16),

we claim ({ui J xj, stj}) solves System 2. This is obvious,

except for the condition that s x 0 0. So suppose x3  - 1.

Then by (4.10), (4.11), (4.14), and (4.15), j l 0

for i A I and j # 3. Substituting (4.12) and (4.13) into

(4.16) indeed implies & = 0.

Now let (uiV ViJ' xis, si)) solve System 2. We aim to

show that ({uij J xij 1) is a solution to System 1. The only

difficulty here is to show we can find (ai) such that constraints

(4.12) and (4.13) hold. So again suppose xT . This time

constraints (4.18) - (4.20) together imply that IIj V 3 0

for i # I and j # 3. Thus, by (4.21),

&I ++ -3+ ; - 0 .

But this implies we can find - such that, for i - T and J = 3,

(4.12) and (4.13) hold.

: 9K:.
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So we seek an algorithm to solve System 2. Algebraically, we do

this by first solving a relaxation of the problem, and then gradually

perturbing it until System 2 is solved. Qualitatively, we accomplish

this by using a generalization of the Gale-Shapley algorithm.

First, define the constants

= Ri aui Sj b vij

Y ij ai + bij

So, we can rewrite (4.21) as:

n m

(4.21') +ij + + 0a t] blj slj

Next, consider the following changes to System 2:

1) Remove constraint (4.20)

2) Replace (4.21') with (4.21"):

n
X' u l max V kj

(4.21") Yij + + k1I...m0
baijaj bij-si

Denote this newly defined system as System 2R.

Remark: The constraints comprising System 2R entail all the

requircments for a stable feasible matching except that women are

allowed to retain more than one man. A woman with more than one man

. ,. .W. .. L-A
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evaluates her utility from all of her suitors, and attains the maximum

such value.

Lemma 4.2: Any solution to System 2R which also satisfies

(4.20) is a solution to System 2.

Definition: Given the constants {R i, {S 1, {u ij}, {v i, {a ij},

and {b1 1 }, define the U-Solution in the following way:

1) Set i= min aijyij for every i

. be the argmin if i < 0
Let j (i.)

be undefined if Pi - 0

*",: 2) xii = 1 ifj
2 Let 

(I.)if i i M

X.°L; = 0 *
•u uiJ i

Let x if j # (i)
- 4j 0

Let v = 0 for every i, J.
ii

3) Finally, given {uj} defined above, let
ii

n

e = + for all i, J.

Remark: The U-Solution solves System 2R.

U:

.::..-
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Remark: Suppose each man asks himself, "If I give her her

reservation utility, which woman will make me the happiest?". In fact,

the U-Solution is the result if this assignment-utility allocation is

carried out. It is stable bLzause no man would want to leave such an

arrangement. However, there is a problem in that some women are likely

to be matched with more than one man. Hence, the U-Solution solves

System 2R but in general not System 2.

Next, we describe what will become the iterative step of our

procedure.

Lemma 4.3: Let z = {x ij ,  s ij} solve System 2R,

but not System 2 [i.e., constraint (4.20) doesn't hold]. Thus,

there exists a I for which the set

K(j) = {i: xi = 1}

contains at least two elements.

Now perturb z in the following way:

1) Let v max v j for every J.vj ii,..,

v
2) Let ui max (a [-y 1+ for each i.SJ A L [i ] j i b iJ

L be the argmax if ui > 0
Let J (i)

not exist if Ui 0.
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* U

3) Let v max ub ]1Y3)Le v =icK(3) "b ij a-
Iii

Let i be the argmax.

. 4) Set x*= 1, v* * v u* = ui* ,

xi = x-j= 0 for all i#i , j# .

5) For i c K(j) but I A i , set:
mV

*x ii*(i ) = ,uij*(i )  ui, vij*(i ) 
= v (i)'

xij = 0 for all j j J (i).

Note that if j (i) does not exist, i becomes unmatched.

6) For i e K(3), do not change xijj uij or v j for

any j.

7) With the values for {x ij}, {uij }, and { ijI given by

4) - 6), define updated values for {s ij} using (4.21").

Call the end result z'. Then z' solves System 2R also.

Remark: Again, it is helpful to understand qualitatively what is

going on here. First, for each woman J, Step 1) formally defines vj

as the utility of the best offer(s) so far received. Next, suppose some

woman j has at least two offers in hand [ IK()I > 2]. When this

occurs, the associated men "bid" for her as follows.

First, each such suitor i evaluates his "next best alternative"

by considering the set of all other women. With the stipulation that

. .. .-- . . . -
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..

any woman J must be provided with at least vi, he determines the one

[j*(i)] with whom he could attain the highest utility. This utility is

*< denoted ui [Step 2) above].
4-z

' In general, ui is lower than the utility uZ - he now de-

rives from his relationship with J [See Claim belowl. Thus, by

proposing to lower his utility to ui, he offers to increase 's

utility if only she would stay with him.

In Step 3), woman I makes her choice from amongst these offers,

the lucky suitor being i . All of the others are rejected, and now

make offers to their "next best alternatives" [Steps 4), 5) above--of

course, if ui = 0, the "next best alternative" for man i is to attain

an excess utility of 0 by remaining unmatched].

Before proving Lemma 4.3, we must first state and prove a

Proposition.

Proposition 4.4: Let vz = {vZ be the vector of women's

z z
utilities defined in Step 1) for z. Then v < v

Proof: We begin with a Claim:

Claim: If xij =1, then ui  ij.

Proof: Suppose not. Then,

, ) > -"
(aij* [-Y1 * - bJ] j Z

where J is defined as in 2) above.

..°.
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But this implies

, + I + (u < °b j* a* 0

which contradicts (4.21") for z.

To show the Proposition, note that from the above definitions, it

is clear that as we pass from z to z', the only component of v

which changes is V3. But,

-Z" 'U --

Ij =j bil [rj - a ] for some c K(j)

-. •

j - a (by the Claim)
b -[- ij all

.* *
< v = vT by def'n of vI

Proof of Lemma 4.3: The only difficult things to prove are

.> 0 and si;xi; - 0. Equivalently, we must show

that the expression

mm" n --ZI -ZI

Su ~ max IV
-l b kj".- .. '" '-"Y J + -I+ k - . . m

i" a b

is nonnegative for all i and J, and equal to zero if xi 1.

M=4

=4'
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Case 1: 1 1 j = .(so = 1)

Then, 
maflZ

~ max kj
Y += + .

ij i

Ui* *

=0 by definition of u *, v

Case 2: 1. 1 j#

Now, n-Z
), ul max v k

Y + --= +m

max (a,*~ [-, - w-]+)
"'ii + a* bi

i j

a * [Y * -

Yj + a* b* b0
i j i 0

Case 3: 1 c IC(J) but i A i , j 3*

Then, n I
2. max Vk

u +Lii
XJ

4

1 01.. . . . . . . . . . . . - . . . . . . . . . .
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ii a-
Ui

Case 4: i cK(3) but i #i*, J j Mi [o#~il

Her aginx - 1. And, since j *(i) exists,

iI.

0 < U, aj [ -Y

Thus, n ZI-K'
Smax vk

i-i ~ k'.1,...mk
+ j a +bij

4 i + (i)
Yi*() ai* bi(i) ij*(i)

=0 by definitions of ui, J i

Case 5: i e K(J) but i #i*, j j (i), .1#

Now, n
SUmax v k

~ij + a 1  + b
ij ij

YiL. +
a~ b

ij ij

> +ai +>0
ij ij i

Fjaijbi
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Case 6: iK(J), i-I

We have n 9
ui max Vkj

Yj + fi + k=l...
. .j a ij b ij

n
+ u v

Y + + by 6) above.
ai

n -z
uit z

Yij + - by Proposition 4.4
r! aib

> 0 because z satisfies System 2R

Case 7: i K(j), j A J .

In this case, none of the quantities

n
x ij I Uj, or max -.,

change as we move from z to z'. Hence, si,. >0 andI-
52'z

s X - 0 imply sj] > 0 and sT x =0.ij u 0i jill

Thus, we have the makings of an algorithm. We start with the

U-Solution, which solves System 2R. If it also satisfies (4.20), it

solves System 2 [Lemma 4.2], and thus is in the core. If not, we

perturb it in the manner described above [Lemma 4.31, obtaining another

solution to System 2R with a higher v v. Again we check

condition (4.20), and so on.

" ' " " " - -" -" " " ' " " " : " " ' " . ' - " : " -" 4 " -"4 . . . . . . ." " ".-" ". *-.-. .". ... . .' " " ' "4" ' " 4 4' 4" " " " " ' "'.



-30-

However, we need to show that the algorithm will terminate in a

finite number of steps. We now give a nondegeneracy assumption which

insures that this occurs.

But first, a necessary preliminary:

Proposition 4.5: Consider the algorithm just described, and let

- -z z zg
X vi x sj} be a solution obtained at

any step. Then, for every J,
-X

v max v
i ii

is equal to vii for any i in K(J).

Proof: This property holds trivially for the U-Solution because

-U-Solvii -0 for every i and J. And, it is also easy to see that

the "pivoting" procedure defined above preserves it.

Theorem 4.6: Suppose there exists an c > 0 such that, for all

but a finite number of iterations,

v bi*3 [ - * i* -

(4.23)
ut

> max * (bI[-Yi a +) + C..-- iE K(J) ,ii biaii

Then the algorithm terminates at a stable solution after a finite number

of iterations.

................... ..-... ......... . . . •. . .
- - - .- . . , L , ,- ... #r..', . -: ,I.".. . . .. . . . . . . . . . . . . . . . . . .... . ._.. ."."-..,..-' J . . .. . % -". ."," " ". ." . . . "
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In order to prove this, we again need a preliminary result:

Claim: Suppose we "pivot" on a J such that (4.23) holds.iI

Then v2 > v! +.

Proof: By Proposition 4.5,

-V VTj bij r-Y a for any i c K(J);. at

In particular, choose i =1 # i , with I c K(3). Then,

V!= b-T--,: ij- ij

by the Claim in 
the<i ]-a, proof of

ii Lii [i-a Proposition 4.4

zo
<v. - by (4.23)

Thus, condition (4.23) implies that in an infinite number of

iterations, some woman's utility increases by E. So, Theorem 4.6 will

follow because the set of core utilities for women is bounded.

Formally,

~ -N
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Proof of Theorem 4.6: Suppose the algorithm does not terminate,

and consider z after

4,..%.

n max [-~Yij b 1jI

J=1 i

pivots in which (4.23) is satisfied.

Then, because of the preceding Claim, one can see that in at least m

of these maneuvers, we are pivoting on a for which

(4.24) v3 > max -Y -b3

'%,i""'"m+ .- i biji

But (4.24) implies that

"-': ui aij - ] < 0

for all i c K(3), which in turn implies u, -0 for i #i c K(3).

Thus, each such pivot removes a man from the matching [Step 5) of the

algorithm]. So, z must have all m men removed from the matching, and

-.' so trivially satisfies (4.20).

Remark: By a similar argument, we can show that the conclusion of

kI the Theorem remains valid if we replace condition (4.23) with

(4.25) -ri t + _for some i # i c K(j)
N.-- / >
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Remark: We reiterate that this algorithm looks like the analogue

of the Gale-Shapley algorithm, which treats the simpler, "preference

ordering" case. This is because:

I) The algorithm starts with each man proposing to the woman

who will give him the most utility [i.e., the U-Solution].

2) The algorithm continues so long as some woman I has two

or more proposals out of which she accepts one and rejects the rest

[i.e., ,K(3)I > 2. i is the lucky man.]

3) If a man gets rejected, he proposes next to another woman

who can give him the most utility [Steps 2), 5) of the algorithm.]

4) As the algorithm continues, the women's position improves

[Proposition 4.4] and the men's gets worse.

5) The algorithm terminates with a man-optimal matching,

although not necessarily with the man-optimal utilities. The proof of

this is in a forthcoming paper (Quint 1985).

5. The Nonlinear Separable and Nonlinear Nonseparable Cases

In this section, we show how the algorithm defined in Section 4

generalizes to cover the case where u ij(a) and v i(a) are arbitrary

strictly increasing functions. All of the results of the previous

section hold in this more general setting.
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Recall from Section 2 the definitions

uij(a) = utility to man i of being matched to woman j and

receiving payment of a

vj (a) = utility to woman j of being matched to man i and

receiving payment of a

f r v (u ) - inverse function of u ij(a)

- (V inverse function of vi (a)

R = reservation utility of man i

- = reservation utility of woman J

- Again consider any matching p, and let a i be the amount that man

i receives from his mate V[i]. Define

u (a)- R if i matches j
(5.1) u =

0 otherwise

v (-a S if i matches J
(5.2) vl

(520 otherwise

1 if i matches j

(5.3) x
i 0 otherwise

Proceeding as in the previous section, we can again pose the

problem in terms of a "System 2":

(5.4) 9i (l- ) - l(l- ) - sl xj - 0
ii ii ii ii ji

MIA'.
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~2 n
(5.5) xi 1I

*(5.6) xi

n m
(5.7) f ~R + I iiu + g I - Sj =0

(5.8) Ui vj11 sj 5j > 0,Xj 0 or 1.

The next step is to define the relaxation "System 2R". We do this

by making the following changes to (5.4) -(5.8):

1) Remove constraint (5.6)

* 2) Replace (5.7) with (5.7"):

n
(5.7") f i( R i + jy g ~ ij( S + max v kj S - ij 0

Remark: Any solution to System 2R which also satisfies (5.6)

solves System 2.

Definition: Given the functions u 1j(a), v i(a) and the constants

{R I {S Idefine the.U-Solution in the following way:

1) Set =max u1 (-g~( S ))-R for every i.
j ij i

Le * be the argmax if > 0

be undefined if < 0

J. *
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2) xjj =1 ,
Let if J =J (1)

U ij =081

ij

Let xij M f ,

u j =0

Let v = 0 for every i, J.

3) Finally, given {u} defined above, let
ij

n

s = gij (S) + f ij( i + R i

Remark: The U-Solution solves System 2R.

The algorithm itself, as defined in the statement of Lemma 4.3,

will be unchanged, except that now:

(5.9) u, = max [uij(-gtj(S + v)) - R, ] for each i.

(5.10) v = max [ vi-(-fI-(R, + u,)) - -+
*,,. ic K(j)

Also note that we now update {si using (5.7").
io

Finally, the analogue of Theorem 4.6 is

o Theorem 5.1: Suppose there exists an e > 0 such that, for all

but a finite number of iterations,

0i

°-*
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v* - [ (-fi*( * + Ri*)) S3

> max j v i(-f -( u + R)) - S3 +

Then the algorithm terminates at a stable solution after a finite number

of iterations.

6. Topics for Further Research

The results in this paper raise a number of important issues. One

is the question of how strong a condition (4.24) is, or, whether it is

even necessary at all for convergence. All of the sample problems run

so far have both converged and satisfied this constraint, but testing

has been limited and more work needs to be done.

Next, it might be interesting to investigate the complexity of the

algorithm, possibly over various utility functions and/or pivoting rules

(i.e., rules for choosing j when IK(i)j > 2 for more than one j).

Finally, one could try to apply this work to various real-world

situations, such as job-matching-salary determination or a "college

admissions problem with scholarships allowed" setup.

V2P



- 38 -

References

Crawford, V.P., and E.L. Knoer, "Job Matching with Heterogenous Firms
and Workers", Econometrica, Volume 49, No. 2, March 1981.

Dantzig, George, Linear Programming and Extensions, Princeton:
Princeton University Press, 1963.

Gale, David, The Theory of Linear Economic Models, New York: MacGraw
Hill, 1960, Theorem 3.3, p. 84.

Gale, David, and Gabrielle Demange, "The Strategy Structure of Two-Sided
Matching Markets", unpublished technical report, August, 1984.

Gale, David, and Lloyd Shapley, "College Admission and the Stability of

Marriage", American Mathematical Monthly, Volume 69, pp. 9-14,
1962.

Quint, Thomas, forthcoming dissertation, Department of Operations
Research, Stanford University.

Quinzii, Martine, "Core and Competitive Equilibria with Indivisi-
bilities", International Journal of Game Theory, Volume 13,
Issue I (1984), pp. 41-60.

Roth, Alvin E., "The Evolution of the Labor Market for Medical Interns
and Residents: A Case Study in Game Theory", working paper #165,

University of Pittsburgh, 1983.

Scarf, Herbert, "The Core of an N-Person Game", Econometrica, Vol. 35,
No. 1, January 1967.

Shapley, L.S., and M. Shubik, "The Assignment Game I: The Core", Inter-
national Journal of Game Theory, Volume 1, pp. 111-130.

I-



FILMED

12-85

DTIC


